Investigation of energetic proton penetration in Titan’s atmosphere using the Cassini INCA instrument

نویسندگان

  • H. T. Smith
  • D. G. Mitchell
  • R. E. Johnson
  • C. P. Paranicas
چکیده

Saturn’s largest moon, Titan, provides an interesting opportunity to study how dense atmospheres interact with the surrounding plasma environment. Without an intrinsic magnetic field, this satellite’s nitrogen-rich atmosphere is relatively unprotected from plasma interactions. Therefore, the energydeposition rate is important for understanding chemistry and dynamics in Titan’s atmosphere. Since the plasma environment can vary significantly we focus here on the T18 Titan encounter using in-situ data from instruments on board the Cassini spacecraft. These instruments cannot provide in-situ information below the spacecraft closest approach altitude ( 4960km) so we use the Cassini magnetospheric imaging instrument (MIMI) ion-neutral camera (INCA) to remotely image energetic hydrogen particle fluxes (20–80 keV) at altitudes below Titan closest approach. We also use the MIMI low-energy magnetosphere measurements system (LEMMS) to measure the incident ion fluxes as the spacecraft approaches Titan and combine these data sets with an atmospheric model to first reproduce INCA images. We then use this model to calculate the energy-deposition profiles for the observed incident proton flux. Our model is able to reproduce the INCA observations and give the energy density deposited vs. altitude in Titan’s atmosphere; however, we find that the incident fluxes and energy-deposition profiles vary significantly during the encounter. & 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere.

The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetosph...

متن کامل

The Nitrogen Chemistry of Titan’s Upper Atmosphere Revealed

Titan’s atmosphere is unique because dissociation of N2 and CH4, the primary atmospheric constituents, provides the H, C, and N atoms necessary for the synthesis of complex organic molecules. The first steps in the synthesis of organic molecules occur in the upper atmosphere where energetic photons and electrons dissociate N2 and CH 4. We determine the abundance of a suite of nitrogen-bearing m...

متن کامل

Nitrogen Emissions from Titan due to Energetic Electron Bombardment

Emissions from Titan’s dayside atmosphere at ultraviolet wavelengths were observed by Voyager. The major source was shown to be photoelectron interactions with the neutral N2 present in the atmosphere whether or not Titan was inside or outside Saturn’s magnetosphere. Since discrepancies exist between observations and models, and photoelectrons do not contribute significantly to emissions from t...

متن کامل

Impact of aerosols present in Titan’s atmosphere on the CASSINI radar experiment

Simulations of Titan’s atmospheric transmission and surface reflectivity have been developed in order to estimate how Titan’s atmosphere and surface properties could affect performances of the Cassini radar experiment. In this paper we present a selection of models for Titan’s haze, vertical rain distribution, and surface composition implemented in our simulations. We collected dielectric const...

متن کامل

Dissociation of N2 in capture and ionization collisions with fast H + and N ions and modeling of positive ion formation in the Titan atmosphere

[1] Electron capture and ionization cross sections for protons and nitrogen ions incident on N2 are measured in the energy range 10–100 keV using time of flight (TOF) coincidence counting techniques. In the case of proton impact the formation of N2 + ions dominates for both electron capture and ionization channels at all energies, whereas for N ions, the N2 + formation dominates for electron ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009